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I present two new approaches to the study of information in foraging theory. First, rather than 
determine the cost a forager should pay to obtain information, I concentrate on the consequences 
of information use in an interacting population. I describe a density-dependent model which 
tracks genotypes with high and low information access through evolutionary time. Stable 
polymorphisms result. I suggest that the value of information is not monotonically increasing. 
Second, I present a scheme for partitioning the information used in the decision making process. 
Three types of information are recognized: internal information, or an individual's internal state; 
external information, or environmental factors; and relational information, or rules for predicting 
transformations of internal state. Interactions between the three types are examined in an 
extension of the basic model. 

Introduction  
Often the best answer to an old question is a new question. I examine two new questions about information in 
foraging theory.  
 
According to Stephens and Krebs (1986), "Many authors view incomplete information as an unsolved problem 
in foraging theory," but "it is not unsolved because of a lack of effort." What makes it so difficult? In real 
situations, many types of information are woven into an intricate pattern. The brain's power to tease decisions 
out of pattern is not easy to represent with simple models. Consider an animal choosing between prey of two 
types. Type 1 is a model-mimic system with temporal variability in prey toxicity. Type 2 appears in ephemeral, 
shifting patches; thus it shows both temporal and spatial variability. Deciding whether to pursue an item of 
either of these prey types or to search for other prey involves a variety of information.  
 
Also, the impact of information varies among situations, from a small energy loss to death from predation. It is 
difficult to generalize costs across currencies. These two problems, multiplicity of types and multiplicity of 
effects, have led to a "piecemeal case-by-case approach to information problems" (Stephens, 1989), and few 
clear generalizations.  
 
Finally, information use by animals is not easy to observe. A few studies (Krebs et al. 1974, 1978, Orians 1981) 
have developed methods to observe information use, but the approach has not yet found enthusiastic 
experimenters.  
 
I will address two common questions concerning foraging information. 1) What is the value of information? 2) 
How can problems of incomplete information be generalized across different situations? 

What is the value of information? 
The value of information was first defined in economic theory (Raiffa 1968, Gould 1974) and later applied to 
animal behavior (McNamara and Houston 1980, Stephens 1989). The argument is basically as follows. The 
environment can exist in one of many states. Each state is described by a reward function based on possible 
behaviors, and the function's maximum value defines the optimal behavior for that state. An optimally informed 
animal will choose the optimal behavior and receive the maximum reward. An animal with incomplete 
information will choose a behavior based on its inaccurate information. When its behavior misses the optimum 
for the environment's current state, it will receive a non-maximum reward. The value of information is the 
difference between rewards gained by the informed and uninformed animals.  
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Stephens (1989) suggested that the value of information in biological systems ought to be correlated with the 
variance in optimal behaviors. As viable options increase in number, information which helps to choose between 
them becomes more valuable. For example, consider a choice between three sites whose average energy outputs 
fluctuate around 1, 2, and 10 units. Gaining frequently updated information about site outputs will be of little 
value since the variance of the optimal behaviors is zero (the site with 10 units is always chosen). However, if 
the site energy outputs change to 1, 5, and 6 units, the same increase in information will be more valuable, 
because the variance in optimal behaviors is greater.  
 
The above approaches calculate the cost a forager should pay to obtain information, and correlate this cost with 
information's value. This is a logical approach, since information cannot be free. But what would happen if one 
looked at information use from another perspective? I will consider not the cost, but the consequences of 
complete and incomplete information. In other words, if information were free, how much would one want? 
What is the value of free information? Are there factors involved in information use that might be obscured by 
concentrating on cost? 
 
I present here a model which simulates the evolution of genes controlling cost-free information-gathering 
ability. Before describing the model, I will introduce a second question, which it also addresses. What is 
incomplete information? 
 
Most studies of incomplete information concentrate on information about one of two types of uncertainty: 
temporal variability (e.g., fading of memory, McNamara & Houston 1987; sampling rules, Shettleworth et al. 
1988; action under uncertain conditions, Mangel 1990); and spatial variability (e.g., sampling patches, Lima 
1983; leaving patches, Green 1984; searching in patches, Stillman & Sutherland 1990). No matter where the 
uncertainty lies, foragers are assumed to lack needed information about some aspect of the environment: a prey 
item's type, a patch's food density, or a behavior's reward function. But is information about environmental 
parameters the only information needed to make decisions? What exactly is complete information? What does 
omniscience entail? What clear statements can be made about the state from which "incomplete information" 
departs?  
 
To begin, let us examine the act of making a decision: selecting one behavior from the repertoire available. We 
assume that the omniscient animal chooses an action by predicting the effects of each possible behavior on its 
future success (ultimately fitness, but practically maximization of some quantity). Prediction requires that the 
animal create some representation of the real processes that determine the consequences of its behavior. The 
success of the animal's choice relies on how well its prediction represents reality.  
 
What essential features does the representation have? Let us take a simplified look at the process of survival and 
reproduction. Each individual in a population at a given time has an internal state which largely determines its 
current reproductive potential. (See Mangel & Clark (1986) for a review of the state variable approach in 
foraging theory.) That state involves many factors, including stored energy, health, and fertility. The lifetime of 
any individual can be represented as a time series of internal state transformations. It is these transformations 
that the individual attempts to influence by its choice of behavior. However, other factors also influence the 
individual's future state, including biotic and abiotic environmental conditions and the actions of conspecifics. 
The interaction of these forces to produce changes in internal state is governed by a set of rules I will 
collectively call a transforming function. The transforming function reflects physical laws and does not change 
over ecological time. 
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To represent the transformation process, an 
omniscient individual needs three types of 
information. First, it knows its internal state: call 
this internal information. Second, it knows the 
pertinent environmental conditions: external 
information. Third, it knows the transforming 
function itself: relational information. All three 
information types join in the prediction, decision, 
and resulting behavior; and the consequences of that 
behavior become information used in the next 
prediction (Figure 1). 
 
To clarify this scheme, picture a small bird foraging 
in winter. Suppose it must choose between two 
feeding sites. One contains energy-rich food but is 
frequently visited by a predator, and the second is of 
low energy content but is predator-free. What information does the bird use to choose a site? First, it senses that 
it is hungry. In fact, this bird has been operating on a low energy budget for some time, and it may starve tonight 
if it cannot gather enough energy for the night's heat production during the day. Also, the bird is aware of the 
resource quality and predation rate at each of the two sites, and that today the temperature is especially low. The 
amount of food a small bird must eat to survive the night is a specific function of ambient temperature — this 
determines how much is "enough." If the bird has incomplete knowledge of that function and underestimates its 
peril, it may decide to avoid predation by feeding at the safe site and starve as a result. Relational information is 
the framework into which the other information types fit to make the prediction accurate.  
 
Now consider foraging models with these three information types in mind. The classical models (e.g., Schoener 
1971, Charnov 1976b) assume complete external and relational information. Since they are static models, they 
ignore internal state. Explicit incomplete information studies have dealt with deficiencies in external information 
only (as cited above). The dynamic optimization approach considers state-dependent decision making (Mangel 
& Clark 1986, 1988), but assumes complete information on internal state. Studies of rules of thumb (Janetos & 
Cole 1981, Green 1984) implicitly consider reductions in relational information, but assume complete internal 
and external information. 
 
This approach combines internal, external and relational information in one model. It asks: how do the three 
types differ in their impact on decision making? What sorts of interactions occur? 
 
The cost-free information model mentioned above also studied the dynamics of internal, external and relational 
information. Three genes were monitored in the population, one for each type of information.  

The Model  
The model simulates a three-locus, haploid genetic system with one gene for each type of information: internal, 
external and relational. Each locus has one high- and one low-information allele. (These will be abbreviated in 
the remainder of the paper as + and -). Since reproduction is asexual, there is no recombination between 
genotypes, and the population consists of eight strains (+++, ++-, +-+, -++, +--, -+-, --+, and ---). The frequency 
of high-information alleles is calculated from genotype counts made throughout the simulation. 
 
Each individual has an energy supply which is increased by consumption and decreased by maintenance. 
Reproduction and death occur probabilistically, with probabilities dependent on energy states. Mutation does not 
occur. 
 



4 

The model environment is divided into three sites 
within which resources are evenly distributed. Each 
site is replenished in every time frame with a 
random amount of energy drawn from a normal 
distribution about that site's mean. Also, patch mean 
energies are randomly reassigned in every 25th time 
frame, so that for example the good patch may 
become the bad, the bad the medium, and so on. 
These two processes represent fluctuations in site 
quality that might be associated with daily and 
seasonal changes, respectively. A good site gives an 
individual feeding alone an average of 200 units of 
energy, a medium site 100 units, and a bad site 5 
units (Figure 2). 
 
To begin the simulation, three hundred individuals 
are placed randomly in the patches, and they begin 
to forage. Each individual's energy state at time t, 
X(i,t), changes according to the following function:  
 
 X(i,t) = X(i,t-1) + /\X(j,t) - C(m) - C(r) - C(v)  
 
 where /\X(j,t) is the amount of energy any individual consumes given its choice of feeding site j; C(m) is a unit 
maintenance cost; C(r) is a conditional reproduction cost; and C(v) is a movement cost subtracted when an 
individual switches sites. The density-dependence function that determines /\X(j,t) is  
 
T /\X(j,t) = N(j,t) + K/Q(j,t)  
 
where N(j,t) is the number of individuals in patch j at time t, Q(j,t) is the quality of patch j at time t, T is a 
constant regulating the maximum energy available to an individual foraging alone, and K is a constant 
determining the steepness of the curve (see Figure 2). This equation is the model's representation of what I have 
above called the transforming function.  
 
Each individual may reproduce only in every tenth time frame, as determined by its age. (The age, prior 
residence time and time since last reproduction of each individual are randomly assigned at the start. Thus the 
simulation begins as though it were already in motion.) The probability of reproduction is calculated by the 
function 
 
 R[X(i,t)] = 1 - exp[a(X(i,t) - b)] 
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where a determines the steepness of the function and 
b is an energy threshold below which individuals do 
not reproduce (Figure 3). Reproduction occurs when 
a random number selected from a uniform 
distribution falls below R[X(i,t)]. Death is also a 
probabilistic function of energy: 
 
D[X(i,t)] = -exp[a(X(i,t))].  
 
(To generate sufficient genetic flux for evolution to 
occur in a reasonable time, the coefficients used in 
both the reproduction and death equations were high. 
In effect, evolution was speeded up. However, since 
the model was designed to represent interactions in a 
population rather than exact parameters, this does not 
affect the general results.) 
 
Individuals select a site by calculating how much 
energy they can expect to gain from feeding at each 
site, translating these gains into effects on 
reproductive probability, and choosing the site whose 
effect is greatest. Travel is instantaneous. After 
switching sites, an individual must stay in the new 
site for three time frames. Thus only 33% of the 
population may move in any one time step.  

Information-Gathering Genes 
High- and low-information alleles for the internal gene work as follows. Each individual keeps an estimate of its 
internal energy supply. Individuals with the internal high-information allele (I+) have an accurate estimate:  
 
E[X(i,t)] = X(i,t).  
 
Individuals with low internal information (I-) estimate their energy level as one of two values: 
 
 E[X(i,t)] = 1/4 X* if X(i,t) < 1/2 X* or 3/4 X* if X(i,t) > 1/2 X* 
 
where X* is [X(R=0.99) - X(R=0.0)]; so 1/2 X* is the energy level halfway between maximum and minimum 
reproductive probability. Thus the animal's estimate of its energy supply is only accurate to one half of the range 
of energy values (see Figure 3). The step function represents a crude perception of hunger versus satiation. 
 
The external information gene affects how individuals update their running estimates of site qualities (Q(j,t)) 
and densities (N(j,t)). Individuals with the high-information external allele (E+) receive accurate information on 
all sites every fifth time frame. Low-information individuals (E-) update their information every thirtieth time 
frame. Thus the E+ individual tracks changes in the environment with six times more precision than the E- type. 
These updates are provided "from above," without cost and without having to visit sites. Estimates are updated 
according to a one-step linear operator equation: 
 
 E[Q(j,t)] = mQ(j,t) + (1-m)E[Q(j,t-1)], 
 
where m is a memory coefficient which defines the weighting of past and present estimates (larger m implies 
faster memory fade). 
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Differences in relational information affect perception of the density-dependence function. Individuals with the 
high-information relational allele (R+) use the function itself to predict energy gain at each site. Individuals with 
the low-information allele (R-) use a linear approximation to the curve (see Figure 2), 
 
 E[/\X(j)] = T - /\X(j,1)-C(m) * E[N(j)]. 1 - N(j,/\Xi=C(m)) 
 
All individuals use the true reproduction function to predict the effects of possible energy gains on reproductive 
probability. Thus they maximize actual reproductive probability and not some proximal quantity. I do not 
suggest that animals make decisions on the basis of reproductive probability, but use the approach to model 
departures from omniscience.  

Results  
In preliminary runs, allele frequencies reached stable equilibria within 5000 time frames. To test whether the 
system would be attracted to these equilibria from any starting conditions, the following analysis was designed. 
In six 5000-time-frame runs, high-information allele frequencies were begun at 0.25 for each gene. In a second 
six runs, frequencies were started at 0.50, and in a third six runs at 0.75. Each run began with a different seed 
value for the random number generator, to simulate different starting conditions. An analysis of variance 
showed that seed values had no effect on equilibria. Mean high-information allele frequencies were calculated 
for each run from 190 sample periods in the last 4500 time frames of simulation. A grand mean was then 
calculated from mean frequencies for the 18 runs.  
 
Table 1 shows the means and standard deviations of allele frequencies for the primary results, and Figures 4, 5, 
and 6 show sample runs with starting frequencies of 0.25, 0.50 and 0.75 respectively. Since all 18 runs were 
considered together, a small standard deviation indicates that allele frequencies were attracted to a particular 
value regardless of starting values. The internal high-information allele reached no consistent equilibrium; the 
external high-information allele equilibrated around 0.8; and the relational high-information allele equilibrated 
around 0.5.  
 
Figures 4, 5 and 6: Sample runs from primary results, with high-information frequencies started at 0.25 (Figure 
4), 0.50 (Figure 5) and 0.75 (Figure 6) for all genes. Solid line: internal gene; dashed line: external gene; 
dotted line: relational gene. 
 

 
Figure 1 
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Figure 2 

 

 
Figure 3 

  
 
Also, mean allele frequency for each run was regressed against starting allele frequency (0.25, 0.50 or 0.75) 
separately for each gene. A high regression coefficient indicates that final allele frequencies were heavily 
influenced by starting frequencies, and therefore were not stable equilibria. Regression coefficients and 
significance levels are also reported in Table 1. 
 

 internal external relational 
mean (sd) 0.54 (0.27) 0.80 (0.08) 0.52 (0.04)  
regr slope 1.12 *** 0.32 *** 0.12 **  

Table 1. Grand means and standard deviations (from 18 runs of 5000 time frames of simulation) of allele 
frequencies for internal, external and relational high-information alleles. Regression slopes are for regression 
of mean allele frequency on original frequency (0.25, 0.50 or 0.75 in each run).  
* - P < 0.05; ** - P < 0.01; *** - P < 0.001.  
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Table 2 shows the results of a limited sensitivity analysis. The same 18-run protocol was followed for each 
variation in model parameters. Variation was considered in the memory coefficient (0.2, 0.5, 0.8), movement 
cost (2, 5, 10), environmental switching time (25, 100, 5000), and density dependence (present, absent).  
 

Sensitivity Parameters 
Density dependent? Y Y Y Y Y N Y Y 
Movement cost 2 2 2 5 10 2 2 2 
Switch time 25 25 25 25 25 25 100 5000 
Memory coefficient 0.5 0.2 0.8 0.5 0.5 0.5 0.5 0.5 
Results: Internal Gene 
mean (sd) 0.54 0.48 0.51 0.46 0.53 0.47 0.58 0.60 
 (0.26) (0.28) (0.27) (0.33) (0.29) (0.27) (0.24) (0.27) 
regression 1.12 1.06 1.20 1.11 1.36 1.06 1.05 0.87 
slope *** *** *** *** *** *** *** *** 
Results: External Gene 
mean (sd) 0.80 0.87 0.65 0.86 0.87 0.97 0.79 0.68 
 (0.10) (0.05) (0.11) (0.10) (0.05) (0.05) (0.16) (0.08) 
regression 0.32 0.34 -0.06 0.40 0.38 0.06 0.16 0.17 
slope *** *** ns *** ** ns ** ns 
Results: Relational Gene 
mean (sd) 0.52 0.59 0.55 0.63 0.71 0.69 0.54 0.54 
 (0.09) (0.09) (0.14) (0.16) (0.26) (0.07) (0.13) (0.04) 
regression 0.12 0.33 0.32 0.43 0.58 0.26 0.18 0.09 
slope ** *** *** ** ** ns * ns 

Table 2. Means, standard deviations, and regression slopes for runs in model sensitivity analysis. Details of 
simulations same as in Table 1. Probability values same as in Table 1.  
 
Interactions between the three genes were examined in a series of genetic environment runs (Table 3). Each 
gene's activity was noted in four situations: 1) fixation of high-information alleles (+) for both remaining genes, 
2) fixation of low-information alleles (-) for both remaining genes, and 3) and 4) fixation of the (+) allele of one 
gene and the (-) allele of the other. Again allele frequencies were started at 0.25, 0.50 and 0.75 and the means of 
the three runs for each genetic environment were averaged together. 
 

high-information allele frequency set at 0.25 
INT EXT REL 
0.546 (0.351) 1.00 1.00 
0.416 (0.307) 0.00 0.00 
0.520 (0.282) 0.00 1.00 
0.505 (0.049) 1.00 0.00 
high-information allele frequency set at 0.50 
INT EXT REL 
1.0 0.529 (0.078) 1.0 
0.0 0.610 (0.101) 0.0 
0.0 0.520 (0.076) 1.0 
1.0 0.605 (0.102) 0.0 
high-information allele frequency set at 0.75 
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high-information allele frequency set at 0.25 
INT EXT REL 
1.0 1.0 0.513 (0.058) 
0.0 0.0 0.674 (0.194) 
0.0 1.0 0.509 (0.059) 
1.0 0.0 0.583 (0.125) 

Table 3. Means and standard deviations of genetic environment runs. Each mean represents three runs with 
each high-information allele frequency set at 0.25, 0.50 and 0.75. 
 
An additional set of 32 genetic environment runs was carried out in which the number of individuals of each 
genotype in each site was tested for correlation with the per capita energy at each site in 190 sampled time 
periods (Table 4). If the number of individuals is negatively correlated with per capita energy, individuals of that 
genotype visited sites when they were poor choices. Overall, genotypes with the E+ allele were negatively 
correlated with per capita energy, and those with E- were positively correlated or not significantly correlated.  
 

genotype 
number 

I E R # runs significant positive 
correlations 
(proportion) 

significant 
negative 
correlations 
(proportion) 

nonsignificant 
correlations 
(proportion) 

1 - - + 36 16 (0.44)  4 (0.11)  16 (0.44) 

2 + - + 30 19 (0.63)  3 (0.10)  8 (0.27)  

3 - - -  42 13 (0.31)  12 (0.29)  17 (0.41)  

4 + - - 36 11 (0.31)  4 (0.11)   21 (0.58) 

5 - + + 30 2 (0.07)  12 (0.40)  16 (0.53)  

6 + + + 24 2 (0.08)  13 (0.54)  9 (0.38)  

7 - + - 36 8 (0.22)  10 (0.28)  18 (0.50)  

8 + + - 30 5 (0.17)  12 (0.40)  13 (0.43)  
Table 4. Correlations of site densities of each genotype on per capita energy at sites. Negative correlation 
implies poor choices. Correlations calculated from 190 time periods in each run during 200 frames of 
simulation. 

Discussion of Model Results 

Primary results  
Table 1 shows that the external and relational genes exhibited stable allele frequency equilibria. At first glance, 
this result seems counter-intuitive. One would expect increased information access without cost to fixate rapidly. 
A closer look at individual movements reveals the explanation: crowding of high-information individuals at 
high-quality sites. As the proportion of individuals with the high-information allele increases, more of them 
correctly assess site quality. Individuals visit what appears to be the best site, but cannot predict the 
simultaneous movements of other individuals. Thus a large number of individuals begin cycling between sites, 
in effect fleeing from one another. Per capita consumption in each site begins to cycle (Figure 9).  
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In this situation, the uninformed decisions made 
by low-information individuals actually put them 
at a competitive advantage, since the two sites not 
deemed "best" are often sparsely populated. The 
uninformed genotypes, making what appear to be 
errors based on site quality, inadvertently choose 
the best site based on density. Thus high-
information allele frequencies decline — until 
their descent is checked by the real advantage, 
under non-crowded conditions, of choosing the 
best site. The two forces combine to produce 
equilibria.  
 
Figure 7 shows the density in each site for 
genotype I-E-R-, the least informed genotype. 
Figure 8 shows site densities for genotype 
I+E+R+, the most informed genotype, in the 
same run. The difference in movement pattern 
between the two genotypes is clear.  
 
I tested this explanation for the observed equilibria 
by removing density dependence. In the set of 
simulations shown in column 6 of Table 2, per 
capita consumption was made independent of 
density. The external gene went to fixation, and 
the internal and relational genes were neutral. It is 
clear why the relational gene was neutral in a 
density-independent environment: there was no 
relational function to be perceived.  
 
Returning to the density-dependent results, why 
did the internal gene not reach an equilibrium as 
the others did? I see two possible reasons. First, 
because the reproduction function used here is 
monotonically increasing, misjudging one's point 
on the energy axis produces no ranking errors. It 
only produces errors in the estimation of 
differences between sites. Knowing one's true 
energy state in these circumstances will only be 
selectively advantageous when it is important to 
know the difference between site effects, such as 
when travel time is not identical between sites. 
Second, in this model predators never become satiated. If there is no upper bound on feeding, it is not important 
to be aware of internal state — more consumption is always better. If the model were modified to add an upper 
threshold for satiation, alleles for increased internal information might respond to selection.  
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Sensitivity analysis  
Memory coefficient. When the memory coefficient 
was increased from 0.5 to 0.8, causing more rapid 
fading of memory, the high-information allele 
frequency of the external gene decreased from 0.80 
to 0.65. (All other results were as before.) Thus E+ 
individuals are even more likely to crowd together 
when their memory is shortened. Why? To compare 
different memory coefficients, consider how soon 
after an event has occurred that its effect on the 
present decision declines to a negligible amount — 
how soon it is forgotten. With a memory coefficient 
of 0.8, the effect is lost after four time steps, while it 
takes seven time steps with a memory coefficient of 
0.5. Because these individuals are constrained to 
move only once every three time steps, tracking 
density with a new estimate every four steps is too 
fine-grained a sensitivity. It is like watching a 
blinking light and saying, "It's on — no, it's off — 
no, it's on." Individuals with a memory coefficient of 
0.5 were more able to average out fluctuating 
densities. When the memory coefficient was decreased to 0.2, the E+ equilibrium rose from 0.80 to 0.86. Here, 
slower memory fade allowed individuals to better track density changes.  
 
The best memory value for any genotype depends on proportions of other genotypes in the population and 
changes through time. It would be an interesting extension to the model to assign alleles to low and high 
memory coefficients and see which allele would predominate. McFarland & Houston (1987) suggested that 
memory should fade more rapidly as the environment becomes more unstable. In this model there are two 
critical parameters to be tracked: environmental quality, which changes slowly, and site density, which changes 
rapidly. According to their hypothesis, a small memory coefficient for density and a larger one for site quality 
would be adaptive. However, that would require individuals to remember site qualities and be aware of 
conspecifics rather than to remember only past consumption at sites. Most linear operator models have expected 
individuals to remember only their own consumption (e.g., Shettleworth et al. 1988, Bernstein et al. 1988).  
 
Movement cost. Increasing movement cost increased and destabilized the equilibria of both the external and 
relational genes. In the impoverished environment, selection for correct choices was intensified and equilibria 
grew more unstable.  
 
Environmental switching time. Slowing down the rate of environmental change to 100 time frames per site 
reassignment had little effect on the values of equilibria. Stopping change altogether caused equilibria to depend 
on the initial distribution of individuals in the sites. Individuals settled into a long-term pattern of shifting 
between good and medium sites, and those choosing the bad site either moved out of it or died.  

Genetic interactions 
Table 3 shows three major trends in interactions between the three genes. First, external information proved to 
be the most crucial. When the E+ allele was fixed (1.0) the relational gene reached an equilibrium, but when E+ 
was absent (0.0) the relational gene was neutral (Table 3, part c). Therefore in the absence of adequate external 
information, prediction rules are arbitrary.  
 



12 

Second, the relational gene was important in 
reacting to conspecifics. Recall that individuals 
with low relational information replace the 
density dependence function with a linear 
approximation. Because of this, R- individuals 
often make mistakes in site ranking (Figure 10). 
These mistakes reduce the crowding effect of 
simultaneous decisions. Thus in a genetic 
environment of R-, the equilibrium frequency 
of E+ individuals is higher than that in an 
environment with all R+ individuals (Table 3, 
part b). This suggests that rules of thumb not 
only cost less than complicated decision rules, 
but stabilize the population's spatial dynamics 
as well. 
 
The internal gene reaches an equilibrium in 
only one genetic environment: fixation of the 
E+ and R- alleles (Table 3, part a). In this 
situation, all foragers approximate the density-
dependence function. Predicted differences 
between site consumptions are greater than 
actual differences, except in the short range of the density dependence function (Figure 2) where N is small. The 
heightened sensitivity causes individuals to overestimate effects of consumption on reproductive probability. 
Now the difference between I+ individuals (who know their true energy value) and I- individuals (who estimate 
it) becomes important for the first time. Even though all individuals have good external information (E+), I+ 
individuals overcrowd, and the others spread out their choices and do better when the informed group is 
crowded. To a large extent the effect is produced by the chosen linear approximation, which overestimates per 
capita energy for all density values. The phenomenon does not occur in the environment of E- and R-, because 
as we have seen above, nothing is important without good external information.  
 
The analysis of site dynamics (Table 4) showed that individuals of E+ genotypes more often chose bad sites 
(with low per capita energy) than good sites. For E- individuals the opposite was true. Of the E+ genotypes, 
those with R+ showed stronger negative correlations with per capita energy than those with R-, because of 
ranking errors made by R- individuals. As a group, individuals of the least informed genotype, I-E-R-, moved 
practically independently of per capita consumption. However, the behavior of these individuals was not at all 
random; each made clear, deliberate choices. It was the interaction of their choices with all of the others in the 
population that produced a random-looking distribution.  
 
To summarize the genetic environment results, the major qualities of each gene are as follows. The external 
gene is the most important and causes other genes to be nearly trivial in its low-information form. The high-
information relational allele increases the accuracy of estimates, adding to whatever synchronous effect is 
produced by identical external information. The internal gene has little effect in most environments.  

General Discussion 
These results present the surprising conclusion that alleles for increased information access need not evolve to 
fixation. But is the conclusion based on a realistic representation of biological systems? How do the assumptions 
of this model compare to those of other density-dependent foraging models?  

The ideal free distribution 
The ideal free distribution (IFD) describes the spatial distribution of optimal consumers in a patchy, density-
dependent environment (Fretwell and Lucas 1970). It defines optimal consumers as being "ideal," or perfectly 
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accurate in their assessment, and "free," or equally able to enter all areas being considered. (Specifying free 
consumers prevents the IFD from applying to despotic populations, since subordinate individuals are not as free 
as dominants to take advantage of resources.) According to the IFD, optimal competitors will distribute 
themselves so that no individual receives greater resources than any other. Individual site selection produces an 
overall distribution in direct proportion to resource availabilities in patches. The IFD has been confirmed 
qualitatively in bees (Pyke 1980), dungflies (Parker 1970, 1974), toads (Davies & Halliday 1979), sticklebacks 
(Milinsky 1979), ducks (Harper 1982), and wading birds (Goss-Custard 1977a). 
 
The distribution of consumers in this model should fit the IFD. These individuals are supposedly ideal in their 
knowledge and equally free to move. However, fluctuating site numbers show that there is no stable distribution 
here, even when the environment is stable. Why does this model not conform to the IFD? How is it different 
from previous studies? It is different in two ways: first, all individuals move simultaneously; and second, sites 
are chosen based on a definite ranking of sites and not on a probability of movement. I believe that while these 
conditions are unrealistic, they point out hidden assumptions in previous studies of the IFD that are also 
unrealistic. 
 
Theoretical treatments of the IFD can be broken into analytical and simulation models. Each type of model 
typically contradicts one of the two conditions of this model. Analytical models contradict the first, that of 
simultaneous movement. 

Time and the ideal free distribution 
In analytical studies of the ideal free distribution, animals are assumed to move one at a time between sites 
(Comins & Hassell 1979, Sutherland 1983, Pulliam & Caraco 1984, Pulliam 1987). These models speak of some 
animals "first" filling the best site, then "additional" animals filling the second best site, and so on (Fretwell & 
Lucas 1970). Sibly (1983) was the first to state the restriction explicitly: "...each choosing to feed where it 
obtains maximum individual advantage, subject to the constraint that decisions are only made by one individual 
at a time...." Davies (1982), in describing the "behavioural assessment ESS" or "spatial ESS" (Parker 1978), 
goes further. He states, "The stable distribution would come about by each individual ... sampling the various 
habitats and choosing the most profitable one, which will depend on where the other individuals have decided to 
go.... The strategy would therefore be something like, 'if most of the population are at A, go to B.'" How can 
each individual decide where to go after all the others "have decided?" This is clearly a problem. 
 
The representation of time is an important conflict between analytical and simulation models. Simulations 
assign a common time interval for the decisions of all individuals, and do not allow any individual to act outside 
of that simultaneity. Analytical solutions assign an exclusive time interval to each individual decision, and do 
not allow any two individuals to make decisions at the same time. Both approaches place limits on our 
representation of reality, which must lie somewhere between these extremes. 
 
I argue that simultaneity has been under-represented in foraging analyses. Imagine the following scenario. An 
individual is at this moment deciding whether or not to join an existing group. What are the group members 
doing? They are reevaluating their options, as they may do at any time. They may be aware of the individual's 
proximity, and if so, the group's coherence may be affected by the behavior of the deciding individual as it 
decides. Because of simultaneity an individual will always carry an element of uncertainty in its decision. 
Because of simultaneity neat distributions of even "ideal" foragers cannot be realistic.  
 
On the other hand, does completely synchronous decision making pose a serious difficulty for simulation 
models? First we must examine what makes time discrete or continuous. Discrete time is only time in which an 
important factor changes abruptly after a fixed interval of (continuous) time. In most situations encountered by 
foraging animals, time is not discrete. To an animal watching for predators, every second has the potential to 
change important conditions. But there are other situations in which time can more usefully be described as 
discrete, because what happens between changes in the most important factor is immaterial. Three factors 
suggest themselves: 1) dependence on an ephemeral resource (the resource changes abruptly), 2) long travel 
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time (the condition of resources changes during travel; it may not be an abrupt change, but to the returning 
animal it appears so), and 3) high travel cost (the condition of the forager changes during travel; again, the 
change is abrupt in the experience of the traveling animal). Each theoretical approach should design a plausible 
representation of time for the situation it studies.  
 
For situations in which complete synchrony is unrealistic, simulations can be designed in which individuals 
make decisions in partial synchrony. Typically decisions represent one mass activity that takes place in a 
simulation's time loop. The decision process could be subdivided into smaller pieces so that any number of 
individuals could decide at the same time, from one to the entire population. Actually, the procedure only 
subdivides time into very tiny pieces, so that its discrete nature is hidden. Designing a simulation to allow partial 
synchrony would not be a trivial task, but would greatly improve the reality of the model over any approach to 
date. 

Choice and the ideal free distribution 
Since simulation models of the ideal free distribution have been reported, why do they not agree with these 
results? Because they contradict the second condition of this model, that animals make unambiguous choices. In 
Parker's (1978) model of dungflies searching for females, males arrive at the breeding site simultaneously, but 
leave according to a "distribution of emigration thresholds for departure." Lester (1984) and Regelmann (1984) 
both assign their model individuals to new sites based on a probability of movement to each site. Bernstein et al. 
(1988) randomly reassign predators to sites; the decision is how long to stay at a site once there. In each of these 
cases, even though individuals decide simultaneously, their movement is broken up so that decision-dependent 
crowding does not take place. Surprisingly, Bernstein et al. (1988) do describe a modification of their model in 
which consumers are "best informed" — that is, they no longer move randomly between sites, but choose one 
based on an estimation of quality. The site dynamics of their best informed consumers resemble those of my 
high-information individuals. They comment, "The fact that our simulations show that the distribution of 
'omniscient' predators lies farther from the IFD than a population of learners is not equivalent to claiming that 
learners would be favored by selection. In an evolutionary game where most predators are learners, an informed 
predator ... would surely spread, although we have not investigated what the stable state for the population 
would be."  
 
What difference does it make whether choices consist of movement probabilities or imprecise site ranking? 
After all, both mechanisms counteract overcrowding problems. The difference is in awareness. In order for 
animals to assign probabilities to movement in response to uncertain environmental states, as in the above 
models, they must be aware of the fact that the environment is unstable. In effect, individuals must be aware of 
their ignorance. This model illustrates a more plausible situation. I propose that each individual assumes its 
chosen strategy to be the correct one, but that some individuals are wrong for the particular situation they are in. 
Selection then supports a range of behaviors that persists in a fluctuating environment.  
 
The idea that selection upholds variability in behavior has been suggested by other authors. Nur (1987) reviewed 
studies of clutch size to explain the consistent variability in the clutch size of some bird species. He supported 
the hypothesis that a range of clutch sizes is maintained by unpredictable fluctuation in the payoff matrix. He 
suggested that clutch size cannot be described by a mixed or conditional ESS; rather, it follows no equilibrium 
at all because of constantly changing optima.  
 
Clark and Ehlinger (1987) also suggested that individual differences in behavior persist when environmental 
conditions change so rapidly that the optimal behavior cannot be anticipated. In particular, Ehlinger (1986) 
found that bluegill sunfish can be separated into two types based on a tendency to switch to a higher-quality site 
earlier or later in foraging bouts. Simulations showed that early switchers did best in conditions of moderate 
variability in prey density, while late switchers did best with either high or low variability in prey density. Since 
the variability in prey density can itself change unpredictably, a mix of the two types in the population is 
supported. Finally, Slater (1981) stated that "...where the environment changes in a manner which is more 
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probabilistic than deterministic,... the behavioral option taken by the individual is more of a gamble, and high 
variability is to be expected."  
 
The ideal free distribution was intended to represent a population-level compilation of individually optimal 
decisions. Dealing with simultaneous decision making by having individuals move randomly or based on 
probability makes the IFD not a distribution rising out of optimal individual decisions, but individual foraging 
behavior suited to fit a distribution determined as optimal. This defeats the entire purpose of the IFD as a 
description of the population effects of optimality.  

Conclusions  
Let us return to the two questions posed at the beginning of the thesis. The first was: what can an analysis of 
cost-free information use tell us about the value of information? Simulation has shown that having more 
information does not always confer a selective advantage, even when the information is free. The fitness value 
of free information is not monotonically increasing. Rather, it covers a complex surface of adaptive peaks and 
valleys. Any solution must take into account the accessibility of peaks as well as their height. Individuals may 
be unable to maximize fitness through knowledge of the decisions made by conspecifics. That knowledge may 
involve a considerable investment in observation and cognition, or perhaps manipulation. Instead, they give up 
some information and climb another adaptive peak.  
 
The second question posed was: how can the great variety of incomplete information problems be unified? 
Three major types of information used in the decision-making process were described. Internal information 
concerns internal state; external information concerns the state of the environment external to the animal; and 
relational information concerns interactions between internal and external states. The three types of information 
outlined here may help to evaluate similarities in information use between different situations. Simulation did 
not produce conclusive results, but suggested interesting ideas for further exploration.  
 
Intuition is given a high status in foraging theory. We often declare that something "is intuitively obvious" 
(Stillman and Sutherland 1990) or "fits with intuition" (Stephens 1989), and label results that do not match our 
expectations as "paradoxical" (McNamara and Houston 1980). What exactly is intuition? The Oxford English 
Dictionary defines it as "immediate insight by sense." The important word here is sense. Our sense is one of 
reasoning, cultural, educated animals. Our sense is not that of other species, and it is certainly not that of natural 
selection. The conclusions presented here are not obvious according to current intuition, nor are many of the 
results produced by game theory analyses and individual-based population models. Perhaps a new "intuition" 
which takes account of factors above the level of the individual is appropriate. In the future, an integrative 
perspective may not be considered a special approach to behavioral biology or of special concern to social 
behaviorists, but as a framework within which all behavior must be viewed. 
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Appendix: Program Code 
 
PROGRAM inform; 
 
{ Notes : LSP = low sampling period, NL = nonlinear, PV = personal } 
{ value. These are the high-information alleles.                   } 
{ Coeff = a, the coefficient of the reproduction function.         } 
{ Qual# is the quality of each site.                               } 
 
USES crt; 
 
CONST startsize =  300;          coeff = -0.005; {-0.000175;} 
      qual1 = 500;               memory = 0.5; 
      qual2 = 15000;             maintcost = 10; 
      qual3 = 29500;             babycost = 80.0; 
      maxindv = 1000;            startfood = 450; 
      threshold = 10;            T = 6000; 
      K = 884000;                kick = 0; 
      P = 1.0;                   refractory = 10; 
      move = 2.0; 
 
TYPE real3array = array[1..3] of real; 
     int3array = array[1..3] of integer; 
     three = 1..3; 
     eight = 1..8; 
 
     onebody = record 
               speriod : boolean;         nonlinear : boolean; 
               persvalue : boolean;       SE : real; 
               howlong : integer;         estimateSE : real; 
               estimateQ : real3array;    estimateN : real3array; 
               where : three;             alive : boolean; 
               count : 0..10;             age : integer; 
               moved : boolean;           end; 
 
     place = record 
           kind : three;                   quality : real; 
           attendance : integer;           totNL : integer; 
           totLSP : integer;               totPV : integer; 
           addSE : real;                   end; 
 
 
      placearray = array[1..3] of place; 
      bodyarray = array[1..maxindv] of onebody; 
      eightarray = array[1..8] of 0..1000; 
      threeeight = array[1..3] of array[1..8] of 0..1000; 
 
VAR indv :                           array[1..1000] of 1..1000; 
    body :                           bodyarray; 
    site :                           placearray; 
    know :                           eightarray; 
    gensite :                        threeeight; 
{    trans :                          array[1..3] of array[1..3] of integer;} 
    qual :                           array[1..3] of integer; 
 
    freqLSP, freqNL, 
    probdeath, 
    freqPV, seed, 
    expectedkids, justanumber, 
    startLSP, startNL, startPV :     real; 
 
    totLSP, totNL, totPV, 
    i, j, q, time,{ oldtime,} 
    printyear, totaltime, 
    popsize, babies, dead, 
    whom, run, jk, this, kid, switch :       integer; 
 
    decided, extinct, screenupdate : boolean; 
    out{, error} :                   text; 
    ans :                            char; 
 
FUNCTION UniRand(Seed:real; Var TinySeed: real): real; 
const a = 16807.0; 
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      m = 2147483647.0; 
var this : real; 
begin 
     this := a*Seed; 
     Seed := this - m*(trunc(this/m)); 
     UniRand := Seed/m; 
     TinySeed := Seed; 
     end; 
 
FUNCTION smintrand(most: integer; seed: real; var newseed: real): integer; 
var bottom, top, where: real; 
    i : integer; 
begin 
     top := 0; 
     smintrand := 0; 
     where := unirand(seed,newseed); 
     for i := 1 to most do begin 
         bottom := top; 
         top := top + 1.0/most; 
         if (where > bottom) and (where <= top) then smintrand := i; 
         end; 
     end; 
 
FUNCTION intrand(most: integer; seed: real; 
         var newseed:real): integer; 
begin 
    intrand:= trunc(most*unirand(seed,newseed)) + 1; 
    end; 
 
FUNCTION NormRand(mean: real; variance: real; seed: real; 
                                         var newseed: real): real; 
var j : integer; 
    total : real; 
begin 
    total := 0; 
    for j := 1 to 12 do total := unirand(seed,seed) + total; 
    normrand := ((total - 6)*sqrt(variance)) + mean; 
    end; 
 
FUNCTION max(var efft: real3array): integer; 
var i, this: integer; 
begin 
     this := 1; 
     for i := 2 to 3 do if efft[i] > efft[this] then this := i; 
     max := this; 
     end; 
 
PROCEDURE changesites(var sites: placearray; 
          seed: real; var newseed: real); 
{ reassigns identities of sites } 
var q: integer; 
 
begin 
    sites[1].kind := intrand(3,seed,seed); 
    if sites[1].kind = 1 then begin 
          sites[2].kind := intrand(2,seed,seed) + 1; 
          if sites[2].kind = 2 then sites[3].kind := 3; 
          if sites[2].kind = 3 then sites[3].kind := 2; 
          end; 
    if sites[1].kind = 2 then begin 
          sites[2].kind := intrand(2,seed,seed); 
          if sites[2].kind = 2 then sites[2].kind := 3; 
          if sites[2].kind = 1 then sites[3].kind := 3; 
          if sites[2].kind = 3 then sites[3].kind := 1; 
          end; 
       if sites[1].kind = 3 then begin 
          sites[2].kind := intrand(2,seed,seed); 
          if sites[2].kind = 1 then sites[3].kind := 2; 
          if sites[2].kind = 2 then sites[3].kind := 1; 
          end; 
 
    end; 
 
PROCEDURE NLeffect(energy: real; estqual: real3array; 
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          estatt: real3array; var wheretogo: three; mve: real); 
{ calculates effect on probability of reproduction of eating } 
{ at each site based on estimates of Q and N } 
{ using real density-dependent function } 
 
var Pnow,difference : real; 
    addSE,effect: real3array; 
    i,j : integer; 
begin 
     Pnow := 1 - exp(coeff*(energy - threshold)); 
     for j := 1 to 3 do begin 
         addSE[j] := T/(P*estatt[j] + K/estqual[j]); 
         if j <> wheretogo then addSE[j] := addSE[j] - mve; 
         end; 
     for j := 1 to 3 do effect[j] := 
         (1 - exp(coeff*(energy + addSE[j] - threshold))) - Pnow; 
   { if time <> oldtime then begin 
        for j:=1 to 3 do write(error,effect[j]:12:3); writeln(error); 
        end; } 
   {  difference := 0; 
     difference := effect[max(effect)] - effect[wheretogo]; 
     if difference > effect[wheretogo]/move then} wheretogo := max(effect); 
     end; 
 
PROCEDURE Leffect(energy: real; estqual: real3array; 
          estatt: real3array; var wheretogo: three; mve: real); 
{ calculates effect on probability of reproduction of eating } 
{ at each site based on estimates of Q and N } 
{ using linear approximation to density-dependent function } 
 
var Pnow,difference : real; 
    addSE, effect : real3array; 
    i, j : integer; 
 
begin 
 
     Pnow := 1 - exp(coeff*(energy - threshold)); 
     for j := 1 to 3 do begin 
         addSE[j] := (((T/(1+ K/estqual[j]))-maintcost)/ 
                     (1 - (T/maintcost-K/estqual[j])/P) )* 
                     estatt[j] + (T/(1+K/estqual[j])); 
         if j <> wheretogo then addSE[j] := addSE[j] - mve; 
         end; 
     for j := 1 to 3 do effect[j] := 
         (1 - exp(coeff*(energy + addSE[j] - threshold))) - pnow; 
  {   difference := effect[max(effect)] - effect[wheretogo]; 
     if difference > effect[wheretogo]/move then} wheretogo := max(effect); 
     end; 
 
BEGIN 
 
 
{FOR RUN := 2 TO 9 DO BEGIN 
totaltime := 4000; 
screenupdate := false; 
seed := 12.3456789; 
writeln('RUN NUMBER ',run); 
case run of 
     1 : begin 
              assign(out,'d:\cynthia\ge6a'); 
              startLSP := 1.0; startNL := 1.0; startPV := 0.5; 
              end; 
     2 : begin 
              assign(out,'d:\cynthia\ge6b'); 
              startLSP := 0.75; startNL := 0.0; startPV := 0.0; 
              end; 
     3 : begin 
              assign(out,'d:\cynthia\ge6c'); 
              startLSP := 0.25; startNL := 0.0; startPV := 0.0; 
              end; 
     4 : begin 
              assign(out,'d:\cynthia\ge7a'); 
              startLSP := 0.5; startNL := 1.0; startPV := 0.0; 
              end; 
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     5 : begin 
              assign(out,'d:\cynthia\ge7b'); 
              startLSP := 0.75; startNL := 1.0; startPV := 0.0; 
              end; 
     6 : begin 
              assign(out,'d:\cynthia\ge7c'); 
              startLSP := 0.25; startNL := 1.0; startPV := 0.0; 
              end; 
     7 : begin 
              assign(out,'d:\cynthia\ge8a'); 
              startLSP := 0.5; startNL := 0.0; startPV := 1.0; 
              end; 
     8 : begin 
              assign(out,'d:\cynthia\ge8b'); 
              startLSP := 0.75; startNL := 0.0; startPV := 1.0; 
              end; 
     9 : begin 
              assign(out,'d:\cynthia\ge8c'); 
              startLSP := 0.25; startNL := 0.0; startPV := 1.0; 
              end; 
    10 : begin 
              assign(out,'d:\cynthia\ge4a'); 
              startLSP := 1.0; startNL := 0.0; startPV := 0.5; 
              end; 
    11 : begin 
              assign(out,'d:\cynthia\ge4b'); 
              startLSP := 1.0; startNL := 0.0; startPV := 0.75; 
              end; 
    12 : begin 
              assign(out,'d:\cynthia\ge4c'); 
              startLSP := 1.0; startNL := 0.0; startPV := 0.25; 
              end; 
    end;} 
assign(out,'inform.out'); 
rewrite(out); 
{assign(error,'trans.out'); 
rewrite(error); 
oldtime :=1;  } 
qual[1]:=qual1; qual[2]:=qual2; qual[3]:=qual3; 
extinct := false; 
clrscr; 
writeln('Enter starting frequencies of Internal, External, Relational HI alleles.'); 
readln(startPV, startLSP, startNL); 
writeln('Enter total time'); 
readln(totaltime); 
writeln('Switch the sites how often?'); 
readln(switch); 
if totaltime < 200 then printyear := 1 else 
   printyear := trunc((totaltime + 1)/200); 
{writeln('Enter cost of movement (maintenance cost is ',maintcost:4,')'); 
readln(move);     } 
writeln('Enter seed'); 
readln(seed); 
writeln('Do you want a screen update? (Y or N)'); 
repeat 
      ans := readkey; 
      if ans in ['Y','y'] then screenupdate := true; 
      until ans in ['y','Y','n','N']; 
writeln(out,'Frequencies ',startPV:4:1,startLSP:4:1,startNL:4:1,' Time ',totaltime:6,' threshold 
',threshold:5); 
    writeln(out,'Memory ',memory:4:1,' seed ',seed:16:12,'  maintcost ',maintcost:4); 
writeln('*** RUNNING SIMULATION. PRESS ANY KEY TO SUSPEND PROGRAM. ***'); 
 
                          { initialize arrays } 
 
for i := 1 to 1000 do indv[i] := i; 
for i := 1 to 1000 do body[i].alive := false; 
 
for i := 1 to startsize do begin 
    with body[indv[i]] do begin 
         SE := normrand(startfood,startfood/2,seed,seed); 
         estimateSE := SE; 
         for j:=1 to 3 do begin 
             estimateQ[j] := qual[2]; 
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             estimateN[j] := startsize/3; 
             end; 
         alive := true; 
         where := smintrand(3,seed,seed); 
         howlong := smintrand(3,seed,seed); 
         count := 0; 
         age := intrand(4999,seed,seed); 
         end; 
    end; 
 
                 { assign allele frequencies } 
 
for i := 1 to startsize do body[indv[i]].speriod := false; 
if startLSP <> 1.0 then begin 
for i := 1 to round(startLSP*startsize) do begin 
    repeat this := intrand(startsize, seed,seed) 
           until body[indv[this]].speriod = false; 
    body[indv[this]].speriod := true; 
    end; 
    end else for i := 1 to startsize do body[indv[i]].speriod := true; 
 
for i := 1 to startsize do body[indv[i]].nonlinear := false; 
if startNL <> 1.0 then begin 
for i := 1 to (trunc(startNL*startsize) + 1) do begin 
    repeat this := intrand(startsize, seed, seed) 
           until body[indv[this]].nonlinear = false; 
    body[indv[this]].nonlinear := true; 
    end; 
    end else for i := 1 to startsize do body[indv[i]].nonlinear := true; 
 
for i := 1 to startsize do body[indv[i]].persvalue := false; 
if startPV <> 1.0 then begin 
for i := 1 to (trunc(startPV*startsize) + 1) do begin 
    repeat this := intrand(startsize, seed, seed) 
           until body[indv[this]].persvalue = false; 
    body[indv[this]].persvalue := true; 
    end; 
    end else for i := 1 to startsize do body[indv[i]].persvalue := true; 
 
                { calculate initial site attendance } 
 
for i := 1 to 3 do site[i].attendance := 0; 
for i := 1 to startsize do site[body[indv[i]].where].attendance := 
    site[body[indv[i]].where].attendance + 1; 
 
time := 0; 
for j := 1 to 3 do site[j].quality := 0; 
popsize := startsize; 
time := 0; babies := 0; dead := 0; 
extinct := false; 
 
WHILE TIME <= TOTALTIME DO BEGIN 
 
   if keypressed then begin 
      writeln('Press s to stop and g to go on'); 
      repeat 
         ans := readkey; 
         if ans in ['s','S'] then halt(1); 
         if ans in ['g','G'] then writeln('Press any key to stop again.'); 
         until ans in ['s','S','g','G']; 
       end; 
 
    time := time + 1; 
    babies := 0; dead := 0; 
 
                      { switch sites around } 
 
    if (time = 1) or ((time/switch) = trunc(time/switch)) then 
         changesites(site,seed,seed); 
 
          { select site qualities for time step from normal dist } 
 
    for q := 1 to 3 do site[q].quality := normrand(qual[site[q].kind], 
        qual[site[q].kind]/10.0,seed, seed); 
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                       { update estimates } 
 
    for i := 1 to popsize do begin 
        whom := indv[i]; 
        if body[whom].persvalue then 
           body[whom].estimateSE := body[whom].SE 
           else begin 
                if body[whom].SE > 0.5*ln(0.001)/(-1*coeff) then 
                   body[whom].estimateSE := 0.75*ln(0.001)/(-1*coeff) 
                   else body[whom].estimateSE := 0.25*ln(0.001)/(-1*coeff); 
           end; 
        if (body[whom].speriod) and (body[whom].howlong = 1) then begin 
           for j := 1 to 3 do begin 
                body[whom].estimateQ[j] := (memory*site[j].quality) 
                     + (body[whom].estimateQ[j]*(1-memory)); 
                body[whom].estimateN[j] := (memory*site[j].attendance) 
                     + (body[whom].estimateN[j]*(1-memory)); 
                end; 
           end; 
        if (not body[whom].speriod) and (body[whom].count = 10) then begin 
           for j := 1 to 3 do begin 
                body[whom].estimateQ[j] := (memory*site[j].quality) 
                     + (body[whom].estimateQ[j]*(1-memory)); 
                body[whom].estimateN[j] := (memory*site[j].attendance) 
                     + (body[whom].estimateN[j]*(1-memory)); 
                end; 
           body[whom].count := 0; 
           end; 
    end; 
 
               { individual evaluations and movements } 
 
    jk := 0; 
   { for i:=1 to 3 do for j:=1 to 3 do trans[i,j] := 0;} 
    for i := 1 to popsize do begin 
           whom := indv[i]; 
           jk := body[whom].where; 
           body[whom].moved := false; 
           with body[whom] do begin 
                if howlong >= 3 then begin 
                   if nonlinear then NLeffect(estimateSE, estimateQ, 
                      estimateN, where, move) 
                      else Leffect(estimateSE, estimateQ, estimateN, 
                      where, move); 
                   howlong := 0; 
                   if not speriod then count := count + 1; 
                   end; 
                end; 
           body[whom].howlong := body[whom].howlong + 1; 
           body[whom].age := body[whom].age + 1; 
           if jk <> body[whom].where then body[whom].moved := true; 
          { trans[jk,body[whom].where] := trans[jk,body[whom].where] + 1;} 
           end; 
   { writeln(error,time:5); 
    for i:=1 to 3 do begin 
        for j:=1 to 3 do write(error,trans[i,j]:8); 
        writeln(error); 
        end; 
    writeln(error); } 
 
                      { calculate site attendance } 
 
    for i := 1 to 3 do site[i].attendance := 0; 
    for i := 1 to popsize do begin 
        for j := 1 to 3 do if body[indv[i]].where = j then site[j].attendance := site[j].attendance + 
1; 
        end; 
 
                  { calculate per capita consumption } 
 
    for j := 1 to 3 do site[j].addSE := 
        T/(P*site[j].attendance + (K/site[j].quality)); 
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                  { calculate site totals for output } 
 
    totLSP := 0; totNL := 0; totPV := 0; 
    freqLSP := 0; freqNL := 0; freqPV := 0; 
 {   for j := 1 to 3 do site[j].totLSP := 0; 
    for j := 1 to 3 do site[j].totNL := 0; 
    for j := 1 to 3 do site[j].totPV := 0; } 
    for i := 1 to popsize do begin 
         whom := indv[i]; 
         if body[whom].speriod then begin 
              totLSP := totLSP + 1; 
            {  site[body[whom].where].totLSP := 
              site[body[whom].where].totLSP + 1; } 
              end; 
         if body[whom].nonlinear then begin 
              totNL := totNL + 1; 
            {  site[body[whom].where].totNL := 
                   site[body[whom].where].totNL + 1; } 
              end; 
         if body[whom].persvalue then begin 
              totPV := totPV + 1; 
            {  site[body[whom].where].totPV := 
                   site[body[whom].where].totPV + 1;  } 
              end; 
         end; 
    freqLSP := totLSP/popsize; freqNL := totNL/popsize; 
    freqPV := totPV/popsize; 
 
            { calculate genotype frequencies for output } 
 
    for i := 1 to 8 do know[i] := 0; 
    for i := 1 to 3 do for j := 1 to 8 do gensite[i,j] := 0; 
    for i := 1 to popsize do begin 
        with body[indv[i]] do begin 
             case speriod of 
                  false: begin 
                      case nonlinear of 
                           true: begin 
                                 case persvalue of 
                                      true: begin 
                                            know[2] := know[2] + 1; 
                                            for q := 1 to 3 do if 
                                                where = q then 
                                                gensite[q,2] := gensite[q,2] + 1; 
                                            end; 
                                      false: begin 
                                             know[1] := know[1] + 1; 
                                             for q := 1 to 3 do if 
                                                where = q then 
                                                gensite[q,1] := gensite[q,1] + 1; 
                                            end; 
                                      end; 
                                 end; 
                           false: begin 
                                  case persvalue of 
                                       true: begin 
                                             know[4] := know[4] + 1; 
                                             for q := 1 to 3 do if 
                                                where = q then 
                                                gensite[q,4] := gensite[q,4] + 1; 
                                            end; 
                                       false: begin 
                                              know[3] := know[3] + 1; 
                                              for q := 1 to 3 do if 
                                                where = q then 
                                                gensite[q,3] := gensite[q,3] + 1; 
                                            end; 
                                       end; 
                                  end; 
                           end; 
                     end; 
                  true: begin 
                     case nonlinear of 
                          true: begin 
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                                case persvalue of 
                                     true: begin 
                                           know[6] := know[6] + 1; 
                                           for q := 1 to 3 do if 
                                                where = q then 
                                                gensite[q,6] := gensite[q,6] + 1; 
                                            end; 
                                     false: begin 
                                            know[5] := know[5] + 1; 
                                            for q := 1 to 3 do if 
                                                where = q then 
                                                gensite[q,5] := gensite[q,5] + 1; 
                                            end; 
                                     end; 
                                end; 
                          false: begin 
                                 case persvalue of 
                                      true: begin 
                                            know[8] := know[8] + 1; 
                                            for q := 1 to 3 do if 
                                                where = q then 
                                                gensite[q,8] := gensite[q,8] + 1; 
                                            end; 
                                      false: begin 
                                             know[7] := know[7] + 1; 
                                             for q := 1 to 3 do if 
                                                where = q then 
                                                gensite[q,7] := gensite[q,7] + 1; 
                                            end; 
                                      end; 
                                 end; 
                          end; 
                     end; 
                  end; 
             end; 
        end; 
 
 
                               { output } 
 
 
    if (time > 1000) or (time/printyear = trunc(time/printyear)) then begin 
       writeln(out,'Time = ',time:4); 
       for i := 1 to 8 do write(out,know[i]:5); 
       writeln(out); 
       writeln(out, freqLSP:8:4, freqNL:8:4, freqPV:8:4, popsize:5); 
     {  writeln(out,site[1].totLSP:4,site[1].totNL:4,site[1].totPV:4); 
       writeln(out,site[2].totLSP:4,site[2].totNL:4,site[2].totPV:4); 
       writeln(out,site[3].totLSP:4,site[3].totNL:4,site[3].totPV:4);  } 
       writeln(out,site[1].attendance:6,site[2].attendance:6, 
           site[3].attendance:6); 
       writeln(out,site[1].quality:12:1,site[2].quality:12:1, 
           site[3].quality:12:1); 
       writeln(out, site[1].addSE:6:1, site[2].addSE:6:1, 
           site[3].addSE:6:1); 
       for i := 1 to 3 do begin 
           for j := 1 to 8 do write(out,gensite[i,j]:6); 
           writeln(out); 
           end; 
       end; 
    if screenupdate then 
       if time/(4*printyear) = trunc(time/(4*printyear)) then 
          writeln(time:4,'  |', freqLSP:8:4, freqNL:8:4, 
          freqPV:8:4, popsize:5); 
 
                                  { eat } 
 
    for i := 1 to popsize do body[indv[i]].SE := body[indv[i]].SE + 
      site[body[indv[i]].where].addSE - maintcost; 
    for i := 1 to popsize do if body[indv[i]].moved then body[indv[i]].SE := 
        body[indv[i]].SE - move; 
    if time = kick then for i := 1 to trunc(popsize/10) do body[indv[i]].SE := body[indv[i]].SE + 6000; 
 
                                { die } 
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    for i := 1 to (popsize-dead) do begin 
           if popsize <= 2 then extinct := true; 
           whom  := indv[i]; 
           probdeath := exp(coeff*body[whom].SE); 
           justanumber := unirand(seed,seed); 
           if justanumber < probdeath then body[whom].alive := false; 
           if body[whom].age >= 5000 then body[whom].alive := false; 
           if not body[whom].alive and 
              (dead < popsize - 2) then begin 
              body[indv[i]] := body[indv[popsize]]; 
              dead := dead + 1; 
              end; 
           end; 
     popsize := popsize - dead; 
  {   write(dead:5);  } 
                             { have babies } 
 
    for i := 1 to popsize do begin 
        whom := indv[i]; 
        if (body[whom].age/refractory = trunc(body[whom].age/refractory)) and (body[whom].alive) then 
begin 
        expectedkids := 1 - exp(coeff*(body[whom].SE - threshold)); 
           justanumber := unirand(seed,seed); 
           if (justanumber < expectedkids) then begin 
              body[whom].SE := body[whom].SE - babycost; 
              babies := babies + 1; 
              kid := indv[popsize + babies + 1]; 
              body[kid].where := body[whom].where; 
              body[kid].speriod := body[whom].speriod; 
              body[kid].nonlinear := body[whom].nonlinear; 
              body[kid].persvalue := body[whom].persvalue; 
              with body[kid] do begin 
                   SE := normrand(startfood,startfood/2,seed,seed); 
                   estimateSE := SE; 
                   for j:=1 to 3 do begin 
                       estimateQ[j] := qual[j];{site[j].quality;} 
                       estimateN[j] := popsize/3; 
                       end; 
                   alive := true; 
                   howlong := 0; 
                   count := 0; 
                   age := 0; 
                   end; 
              end; 
           end; 
        end; 
    popsize := popsize + babies; 
{    writeln(babies:5);  } 
    if extinct then begin 
       writeln(out,'Population crashed.'); 
       time := totaltime + 1; 
       end; 
    END;                                            {time loop} 
    close(out); 
  { END;         run loop } 
   { close(error); } 
END. 

 


